

Sonic Stamp

Tweaks your Freqs to perfection

Important notes - DO NOT SKIP!

If you're using any of our footswitch daughterboards,

DOWNLOAD THE DAUGHTERBOARD DOCUMENT

- Download and read the appropriate build document for the daughterboard as well as this one BEFORE you start the build.
- DO NOT solder the supplied Current Limiting Resistor (CLR) to the main circuit board even if there is a place for it. This should be soldered to the footswitch daughterboard. This applies to older PCBs with a pad marked LED next to the IN V G OU pads.

POWER SUPPLY

Unless otherwise stated in this document this circuit is designed to be powered with 9V DC Tip-Negative supply.

COMPONENT SPECS

Unless otherwise stated in this document:

- Resistors should be 0.25 W . You can use those with higher ratings but check the physical size of them. For kits that use 3 mm resistors instead of standard 6 mm , these will usually be either 0.125 W or 0.4 W .
- Electrolytics caps should be at least 25 V for 9 V circuits, 35 V for 18 V circuits. Again, check physical size if using higher ratings.

LAYOUT CONVENTIONS

Unless otherwise stated in this document, the following are used:

Electrolytic capacitors:

Long leg (anode) to square pad. Stripe indicates cathode.

Diodes/LEDs:

Striped leg (cathode) to square pad. Short leg to square pad for LEDs.
The exception to this is with Russian germanium diodes - stripe = anode.

- ICs:

Square pad indicates pin 1.

Schematic + BOM

R1 2M2
C1
100p
D1 1N4001
R2 1K
C2 4n7
R3 1M
C3 10u elec
IC1-3 TL072
R4 1K
C4 2n7
R5 1K
R6 1M
R7 22K
C5 2n2
C6 6n8
C7 18n
R8 22K
C8 15n
R9 22K
R10 22K
R11 22K
C9 56n
CONT 50KB
MID 50 KB
PROC 50KB

R12 22K
C10 10u elec

R13 22K
R14 15K
R15 10K
R16 10K
R17 62K
R18 100K
R19 1K
R20 47K
R21 47K

The original unit only has two controls CONTOUR and PROCESS. You can keep it simple and go for that, or add in whichever extras you like. There's an optional MIDS pot and two three-way switches to alter the frequencies in which the two main controls operate. HI alters Process, LO alters Contour.

More details on implementing/removing these later in the doc.

The power and signal pads on the PCB conform to the FuzzDog Direct Connection format, so can be paired with the appropriate daughterboard for quick and easy offboard wiring. Check the separate daughterboard document for details.

Be very careful when soldering the diode. They're very sensitive to heat. You should use some kind of heat sink (crocodile clip or reverse action tweezers) on each leg as you solder them. Keep exposure to heat to a minimum lunder 2 seconds). Same goes for the ICs if you aren't using sockets.

Snap the small metal tag off the pots so they can be mounted flush in the box.

You should solder all other board-mounted components before you solder the pots and switches. Once they're in place you'll have no access to much of the board. Make sure your pots all line up nicely.

The best way to do that is to solder
a single pin of each pot in place then melt and adjust if necessary before soldering in the other two pins. Similar procedure for the switches.

Variations

Stock MIDS

If you want to stick with the fixed Mids control, change R14 to 39 K and place a jumper in place of the Mids pot as shown.

No switches

It's very simple to stick to the stock frequency ranges for the Proc and Cont pots. Simply leave out the toggle switches and C5, C6, C8
 and C9. No jumpers required.

Test the board!

Check the relevant daughterboard document for more info before you undertake this stage.

UNDER NO CIRCUMSTANCES will troubleshooting help be offered if you have skipped this stage. No exceptions.

Once you've finished the circuit it makes sense to test is before starting on the switch and LED wiring. It'll cut down troubleshooting time in the long run. If the circuit works at this stage, but it doesn't once you wire up the switch - guess what? You've probably made a mistake with the switch. Solder some nice, long lengths of wire to the board connections for 9V, GND, IN and OUT. Connect IN and OUT to the jacks as shown. Connect all the GNDs together (twist them up and add a small amount of solder to tack it). Connect the battery + lead to the 9 V wire, same method. Plug in. Go!
If you're using a ribbon cable you can tack the wires to the ends of that. It's a lot easier to take them off there than it is do desolder wires from the PCB pads.
If it works, carry on and do your switch wiring. If not... aw man. At least you know the problem is with the circuit. Find out why, get it working, THEN worry about the switch etc.

Now's the time

to refer to the
daughterboard
document for
your chosen bypass method.

Enjoy your pedal!

Drilling template without battery - side DC

Hammond 1590B-60×111×31mm

Pots	7 mm
Jacks	10 mm
Footswitch	12 mm
DC Socket	12 mm
Toggle switches	6 mm

It's a good idea to drill the pot and toggle switch holes 1 mm bigger if
you're board-mounting them.
Wiggle room = good!

This template is a rough guide only. You should ensure correct marking of your enclosure before drilling. You use this template at your own risk.
Pedal Parts Ltd can accept no responsibility for incorrect drilling of enclosures.
FuzzDog.co.uk

