

Mesa Boogie Rectifier in-a-box, without the post-boost bits

Important notes

If you're using any of our footswitch daughterboards, DOWNLOAD THE DAUGHTERBOARD DOCUMENT

- Download and read the appropriate build document for the daughterboard as well as this one BEFORE you start.
- DO NOT solder the supplied Current Limiting Resistor (CLR) to the main circuit board even if there is a place for it. This should be soldered to the footswitch daughterboard.

POWER SUPPLY

Unless otherwise stated in this document this circuit is designed to be powered with 9V DC.

COMPONENT SPECS

Unless otherwise stated in this document:

- Resistors should be 0.25W. You can use those with higher ratings but check the physical size of them.
- Electrolytics caps should be at least 25 V for 9 V circuits, 35 V for 18 V circuits. Again, check physical size if using higher ratings.

LAYOUT CONVENTIONS

Unless otherwise stated in this document, the following are used:

- Electrolytic capacitors:

Long leg (anode) to square pad.

- Diodes/LEDs:

Striped leg (cathode) to square pad. Short leg to square pad for LEDs.

- ICs:

Square pad indicates pin 1.

Schematic + BOM

R1	1M	C1	220p	D1-5	1N4148
R2	1K	C2	220n	D6	1N4001
R3	470K	C3	$33 n$		
R4	10K	C4	560p	IC1-3	4580
R5	470K	C5	$220 n$		
R6	1K	C6	1 u	BASS	100KC
R7	10K	C7	220p	MIDS	100KA
R8	470K	C8	220n	TREB	50KA
R9	1K	C9	1 u	GAIN	100KA
R10	47K	C10	220p	VOL	100KA
R11	100K	C11	1 u		
R12	1K	C12	4 n 7	S1	SPDT ON-ON
R13	4K7	C13	$47 n$		
R14	10K	C14	$47 n$		
R15	1K	C15	100n		
R16	470K	C16	1 u		
R17	470K	C17	470p		
R18	47K	C18	47n		
R19	47K	C19	1 u	The board has been designed	
R20	33K	C20	100n		
R21	33K	C21	1 n	for 3mm resistors, which are	
R22	680K	C22	47 n	usually 0.125 W or 0.4 W . You	
R23	10K	C23	330 p	can use standard 6 mm 0.25 W	
R24	47R	C24	1 u	if you mount them vertically.	
R25	10K	C25	4 n 7	They'll fit just fine.	
R26	10K	C26	10n		
		C27	10u elec		
		C33	100u elec		

The power and signal pads match up to the pads on our Direct Connect daughterboards.

Be very careful when soldering the diodes. They're very sensitive to heat. You should use some kind of heat sink (crocodile clip or reverse action tweezers) on each leg as you solder them. Keep exposure to heat to a minimum (under 2 seconds). Same goes for the ICs if you aren't using sockets.

Snap the small metal tag off the pots so they can be mounted flush in the box.

You should solder all other board-mounted components before you solder the pots. Once they're in place you'll have no access to much of the board. Make sure your pots all line up nicely. The best way to do that is to solder a single pin of each to the PCB, then melt and resit each pot nicely before soldering the other two pins of each.

Same proceduce for the toggle switch. One lug first, melt and tweak, then finish with the others.

I HAVE THE POWER!

This is one of those circuits that can really benefit from some extra juice. Powering it at 18 V gives extra headroom and makes the whole circuit sing.

You can match it up with our charge pump daughterboard to give it the extra goodies if you don't have an 18 V supply.

Simply follow the build doc for the daughterboard kit and connect the main PCB to that instead of our standard bypass boards.

Test the board!

Check the relevant daughterboard document for more info before you undertake this stage.

UNDER NO CIRCUMSTANCES will troubleshooting help be offered if you have skipped this stage. No exceptions.

Once you've finished the circuit it makes sense to test is before starting on the switch and LED wiring. It'll cut down troubleshooting time in the long run. If the circuit works at this stage, but it doesn't once you wire up the switch - guess what? You've probably made a mistake with the switch. Solder some nice, long lengths of wire to the board connections for 9V, GND, IN and OUT. Connect IN and OUT to the jacks as shown. Connect all the GNDs together ltwist them up and add a small amount of solder to tack it). Connect the battery + lead to the 9 V wire, same method. Plug in. Go!
If you're using a ribbon cable you can tack the wires to the ends of that. It's a lot easier to take them off there than it is do desolder wires from the PCB pads.
If it works, carry on and do your switch wiring. If not... aw man. At least you know the problem is with the circuit. Find out why, get it working, THEN worry about the switch etc.

Wire it up

Wiring shown above will disconnect the battery when you remove the jack plug from the input, and also when a DC plug is inserted.
The Board GND connections don't all have to directly attach to the board. You can run a couple of wires from the DC connector, one to the board, another to the IN jack, then daisy chain that over to the OUT jack.
It doesn't matter how they all connect, as long as they do.
This circuit is standard, Negative GND. Your power supply should be Tip Negative / Sleeve Positive. That's the same as your standard pedals (Boss etc), and you can safely daisy-chain your supply to this pedal.

Drilling template

Hammond 1590B
$60 \times 111 \times 31 \mathrm{~mm}$

It's a good idea to drill the pot and toggle switch holes 1 mm bigger if you're board-mounting them.
Wiggle room = good!

This template is a rough guide only. You should ensure correct marking of your enclosure before drilling. You use this template at your own risk.
Pedal Parts Ltd can accept no responsibility for incorrect drilling of enclosures.
FuzzDog.co.uk

