

Recurring Nightmare

Mad modulated fuzz delay

Important notes

If you're using any of our footswitch daughterboards, DOWNLOAD THE DAUGHTERBOARD DOCUMENT

- Download and read the appropriate build document for the daughterboard as well as this one BEFORE you start.
- DO NOT solder the supplied Current Limiting Resistor (CLR) to the main circuit board even if there is a place for it. This should be soldered to the footswitch daughterboard.

POWER SUPPLY

Unless otherwise stated in this document this circuit is designed to be powered with 9V DC.

COMPONENT SPECS

Unless otherwise stated in this document:

- Resistors should be 0.25W. You can use those with higher ratings but check the physical size of them.
- Electrolytics caps should be at least 25 V for 9 V circuits, 35 V for 18 V circuits. Again, check physical size if using higher ratings.

LAYOUT CONVENTIONS

Unless otherwise stated in this document, the following are used:

- Electrolytic capacitors:

Long leg (anode) to square pad.

- Diodes/LEDs:

Striped leg (cathode) to square pad. Short leg to square pad for LEDs.

- ICs:

Square pad indicates pin 1.

Schematic + BOM

IC1 XR2206P**
IC2 PT2399
IC3 7660S***
IC1 MC33172P \ddagger

D1 14001
D2-3 14001
U1 78L05

BLEND	100 KB
DEPTH	100 KC
FBACK	100 KC
FUZZ	1 MA
SPEED	1 MA
TIME	100 KA
VOL	100 KA

WET/DRY SPDT ON-ON
WFORM DPDTON-ON
*We missed the label for C31 - it's labelled as US4.
**Beware fakes. They simply won't work. See later.
***Ensure you get a charge pump with the 'S' suffix or you'll get a whining noise from the circuit.
\ddagger These op-amps are very hard to source in throughhole format, thought SMT versions are readily available.
We've tried a few different substitutions and LM358 gives the best results.

PCB layout ©2019 Pedal Parts Ltd.

The power and signal pads on the PCB conform to the FuzzDog Direct Connection format, so can be paired with the appropriate daughterboard for quick and easy offboard wiring. Check the separate daughterboard document for details.

If you aren't using sockets for the ICs (why not?) be extra careful and take your time soldering them. They're very easily to fry with heat.

You should solder all other board-mounted components before you solder the pots. Once they're in place you'll have no access to much of the board. Make sure your pots all line up nicely.

The best way to do that is to solder a single pin of each pot in place then melt and adjust if necessary before soldering in the other two pins. Same for the toggle switch. If your pots don't have protective plastic jackets ensure you leave a decent gap between the pot body and the PCB otherwise you risk shorting out the circuit.

Snap the small metal tag off the pots so they can be mounted flush in the box.

9 V or 18 V supply?

The circuit works best at 18 V , so we've included an on-board charge pump so you can achieve this with a 9 V supply. If you'd rather use a dedicated 18 V supply you can leave out all the charge pump parts (marked in green on the BOM) and add a jumper as shown in red above. U1 will still drop the voltage going to the PT2399 to the required 5 V .

Testing

You can test the Distortion and Boost sections individually, as if they're separate boards. Do the test wiring as shown below for each section.

UNDER NO CIRCUMSTANCES will troubleshooting help be offered if you have skipped this stage. No exceptions.

Solder some nice, long lengths of wire to the board connections for 9V, GND, IN and OUT. Connect IN and OUT to the jacks as shown. Connect all the GNDs together ltwist them up and add a small amount of solder to tack it). Connect the battery + lead to the 9 V wire, same method. Plug in. Go! You'll have to connect the wire from pad 02 to either 01 or 03 , or you'll get no signal from the Distortion section.

There's no need to connect power to the OV and OG pads - these are purely to supply power to an LED if you're adding the Octave footswitch.
If you have a circuit tester (we sell a few!) just use that as normal.

Wire it up

Wiring shown above will disconnect the battery when you remove the jack plug from the input, and also when a DC plug is inserted.
The Board GND connections don't all have to directly attach to the board. You can run a couple of wires from the DC connector, one to the board, another to the IN jack, then daisy chain that over to the OUT jack.
It doesn't matter how they all connect, as long as they do.
This circuit is standard, Negative GND. Your power supply should be Tip Negative / Sleeve Positive. That's the same as your standard pedals (Boss etc), and you can safely daisy-chain your supply to this pedal.

Drilling template

Hammond 1590BB

It's a good idea to drill the pot and toggle switch holes 1 mm bigger if you're board-mounting them.

Pots	7 mm
Jacks	10 mm
Footswitch	12 mm
DC Socket	$8 / 12 \mathrm{~mm}$
Toggle switches	6 mm

Pots 7 mm 10 mm 12 mm $8 / 12 \mathrm{~mm}$ 6 mm

> FuzzDog.co.uk

