

Big Muff Blender

> All your bass fuzz are belong to us

Schematic + BOM

The main schematic shows the basic Big Muff Pi used throughout most of its history with two small additions:

- Diode lift switch for Q2 clipping
- Shift pot added to the Tone section

These are both optional - see later in the document.

Not sure what to make? Check out Kit Rae's bigmuffpage.com - this guy knows more about all things Muff than Mike Matthews himself. Astounding work.

The schematic highlighted in green is the blend circuit. Here's the BOM for that:

R6	1 M
R20	1 M

R27 100K

R28 3K3
R29 100K

C15 1u
C16 10u elec

Q5 N-Channel FET
(J201, 2N5457)

With the BLEND pot fully CCW you should have a clean signal pretty much the same as your bypassed level.

Carefully tweak the VOL and BLEND controls to get your desired balance of clean and fuzz. The two are very interactive.

Important notes

SHIFT/MIDS

If you are NOT using this control you must place a jumper wire between pads 1 and 2 .

DIODE SWITCH

If you are NOT using this switch but want to keep the clipping diodes in the circuit, you must place a jumper between the pads as shown below. If you want no clipping here, just leave it out.

C14

The PCB has been designed so C14 can lay flat to save on height - see cover image. Though the value of this cap has changed throughout the life of the BMP, 100u is supplied with all kits.

Tone Section

The PCB has been designed with an extra pot to control the MIDS of the circuit. You have several options here. The values listed below replace the same part numbers shown on the BOM for each Big Muff variation shown later in this document. If using any of the tone variation shown below, USE THESE VALUES, not those shown on the standard Muff BOMs.

STANDARD TONE WITH SHIFT POT

Not the best implementation, but it will give you some control over the mids.
R18 10K
SHIFT 25 KB

AMZ PRESENCE V1

Much more control over the mids. A very nice mod without straying too far from the BMP.
R18 3 K 3

C10 10n (actually 12 n in the AMZ guide, but 10 n is easier to source and gives good results)
C11 10n
SHIFT 25 KB

AMZ PRESENCE V2

A huge range of tonal variation, with humped as well as scooped mids available.
R18 3 K 3

R19 470K
C10 15n
C11 1n5
SHIFT 25 KB
TONE 250KA

The power and signal pads on the PCB conform to the FuzzDog Direct Connection format, so can be paired with the appropriate daughterboard for quick and easy offboard wiring. Check the separate daughterboard document for details.

Be very careful when soldering the diodes and transistors. They're very sensitive to heat. You should use some kind of heat sink (crocodile clip or reverse action tweezers) on each leg as you solder them. Keep exposure to heat to a minimum (under 2 seconds).

Snap the small metal tag off the pots so they can be mounted flush in the box.

Positive (anode) legs of the electrolytic caps go to the square pads.

Negative (cathode) legs of the diodes go to the square pads.

You should solder all other board-mounted components before you solder the pots. Once they're in place you'll have no access to much of the board. Make sure your pots all line up nicely. The best way to do that is to solder a single pin of each pot in place then melt and adjust if necessary before soldering in the other two pins. If your pots don't have protective plastic jackets ensure you leave a decent gap between the pot body and the PCB otherwise you risk shorting out the circuit.

Same goes for the toggle switch. Use your enclosure as a guide for positioning them to ensure they line up properly. Solder one lug, then melt it and adjust to get it straight before soldering any others.

PCB layout ©2016 Pedal Parts Ltd.

Black
Russian
R5 12K
R7 1K
R8 10K
R9 100K
R10 470K

C1	100n			R11	12 K
C2	470p	Q1	2N5088	R12	390R
C3	100 n	Q2	2N5088	R13	10K
C4	100 n	Q3	2N5088	R14	390R
C5	470p	Q4	2N5088	R15	470 K
C6	$47 n$			R16	100K
C7	100 n	D1	1N4148/1N914	R17	12K
C8	470p	D2	1N4148/1N914	R18	22K
C9	47n	D4	1 N4148/1N914	R19	22K
C10	3 n 9	D5	1 N4148/1N914	R21	100k
C11	10n			R22	470 K
C12	100 n	sustain	100kA	R23	2K7
C13	100 n	TONE	100 kB	R24	10K
C14	100u	VOLUME	100kA	R25	1M

Civil War

				R10	470K
C1	100n			R11	12K
C2	560p	Q1	2N5088	R12	390R
C3	100 n	Q2	2N5088	R13	10K
C4	100n	Q3	2N5088	R14	390R
C5	560p	Q4	2N5088	R15	470K
C6	47n			R16	100K
C7	100n	D1	1N4148 / 1N914	R17	12K
C8	560p	D2	1N4148/1N914	R18	22K
C9	47n	D4	1 N4148 / 1N914	R19	20K
C10	3n9	D5	1 N4148 / 1N914	R21	100K
C11	10n			R22	470K
C12	100n	SUSTAIN	100kA	R23	2K7
C13	100n	TONE	100kB	R24	10K
C14	100u	VOLUME	100kA	R25	1M

Triangle

R1	3 K 3
R2	82 K
R3	390 K
R4	820 R
R5	22 K
R7	1 K
R8	8 K 2
R9	82 K
R10	390 K
R11	12 K
R12	150 R
R13	8 K 2
R14	820 R
R15	390 K
R16	82 K
R17	22 K
R18	39 K
R19	39 K
R21	100 K
R22	390 K
R23	2 K 7
R24	12 K
R25	1 M

V3 79\#2 - J Mascis

Based on what is supposedly one of J Mascis' favourite Muffs. The original has true tone bypass, this doesn't. Deal with it.
C1 $1 u$
C2 470

C3 $1 u$
C4 1 u
C5 470p
C6 1 u
C7 100
C8 $470 p$
C9 1 u
C10 3n9
C11 10n
C12 100n
C13 $1 u$
C14 100u

Q1
Q2
Q3
Q4

D1
D2
D4
D5 1N4148/1N914

R1
39K
R2
R3
R4 100R
R5
R7
R8 8K2
R9 100K
R10 470K
R11 15K
R12 100R
R13 8K2
R14 100R
R15 470K
R16 100K
R17 15K
R18 22K
R19 39K
R21 100K
R22 390K
R23 2K2
R24 10K
R25 1M

Tall Font Green Russian

Bass players' favourite. The feedback caps in the original are two 1 nf in series, but that's the same as 500pf.

C1 100n
C2 500p
Q1 2N5089
C3 100n
Q2
Q3
Q4
D1
D2
D4
D5

SUSTAIN
100kA
TONE 100kB
VOLUME 100kA

R1	39 K
R2	100 K
R3	470 K
R4	390 R
R5	12 K
R7	1 K
R8	10 K
R9	100 K
R10	470 K
R11	12 K
R12	$390 R$
R13	10 K
R14	390 R
R15	470 K
R16	100 K
R17	12 K
R18	22 K
R19	20 K
R21	100 K
R22	470 K
R23	2 K 7
R24	10 K
R25	1 M

				R1	33K
				R2	100K
Stoner heaven, based closely around a Ram's Head 74\#1 but with different cans and a different emitter resistor in the first gain stage. Awesome stuff.				R3	470K
				R4	470R
				R5	10K
				R7	1K
*BC549C pinout is the opposite to that shown on the PCB, so flip them.				R8	10K
				R9	100K
				R10	470K
C1 100n				R11	10K
C2 560p				R12	150R
C3 100n				R13	10K
C4 100n				R14	150R
C5 560p				R15	470K
C6 1u				R16	100K
C7	100n	Q1-4	BC549C*	R17	10K
C8	560p			R18	33K
C9	1 u	D1-2	1N4148	R19	33K
C10	4 n 7	D4-5	1N4148	R21	100K
C11	10n			R22	470K
C12	100n	SUSTAIN	100KA	R23	2K7
C13	100n	TONE	100KB	R24	10K
C14	100u	VOLUME	100KA	R25	1M

Creamy Dreamer

C1	1u	Q1	2N5089
C2	470p	Q2	2N5089
C3	47n	Q3	2N5089
C4	$1 u$	Q4	2N5089
C5	$470 p$		
C6	$1 u$	D1	1N4148
C7	$1 u$	D2	1N4148
C8	$470 p$	D3	Jumper
C9	$1 u$	D4	1N4148
C10	4n7	D5	1N4148
C11	$10 n$		
C12	$100 n$	SUSTAIN	$100 k B$
C13	$100 n$	TONE	$100 k A$
C14	$100 u$	VOLUME	$100 k A$

R1	39 K
R2	100 K
R3	470 K
R4	Jumper
R5	15 K
R7	1 K
R8	8 K 2
R9	100 K
R10	470 K
R11	15 K
R12	Jumper
R13	8 K 2
R14	Jumper
R15	470 K
R16	100 K
R17	15 K
R18	47 K
R19	47 K
R21	100 K
R22	390 K
R23	2 K 2
R24	10 K

Test the board!

UNDER NO CIRCUMSTANCES will troubleshooting help be offered if you have skipped this stage. No exceptions.

Once you've finished the circuit it makes sense to test is before starting on the switch and LED wiring. It'll cut down troubleshooting time in the long run. If the circuit works at this stage, but it doesn't once you wire up the switch - guess what? You've probably made a mistake with the switch.

Solder some nice, long lengths of wire to the board connections for 9V, GND, IN and OUT. Connect IN and OUT to the jacks as shown. Connect all the GNDs together (twist them up and add a small amount of solder to tack it). Connect the battery + lead to the 9 V wire, same method. Plug in. Go!

If it works, crack on and do your switch wiring. If not... aw man. At least you know the problem is with the circuit. Find out why, get it working, THEN worry about the switch etc.

Wire it up (if using a daughterboard please refer to the relevant document)

Wiring shown above will disconnect the battery when you remove the jack plug from the input, and also when a DC plug is inserted.
The Board GND connections don't all have to directly attach to the board. You can run a couple of wires from the DC connector, one to the board, another to the IN jack, then daisy chain that over to the OUT jack.
It doesn't matter how they all connect, as long as they do.
This circuit is standard, Negative GND. Your power supply should be Tip Negative / Sleeve Positive. That's the same as your standard pedals (Boss etc), and you can safely daisy-chain your supply to this pedal.

Drilling template
Hammond 1590B
$60 \times 111 \times 31 \mathrm{~mm}$

It's a good idea to drill the pot and toggle switch holes 1 mm bigger if you're board-mounting them.
Wiggle room = good!

This template is a rough guide only. You should ensure correct marking of your enclosure before drilling. You use this template at your own risk.
Pedal Parts Ltd can accept no responsibility for incorrect drilling of enclosures.

